168 research outputs found

    Progesterone receptors - animal models and cell signalling in breast cancer: Diverse activation pathways for the progesterone receptor: possible implications for breast biology and cancer

    Get PDF
    Progesterone and estradiol, and their nuclear receptors, play essential roles in the physiology of the reproductive tract, the mammary gland and the nervous system. Estrogens have traditionally been considered associated with an increased risk of breast cancer. There is, however, compelling evidence that progesterone plays an important role in breast cell proliferation and cancer. Herein, we review the possible role of progestins and the progesterone receptor-associated signaling pathways in the development of breast cancer, as well as the therapeutic possibilities arising from our growing knowledge of the activation of the progesterone receptor by other proliferative mechanisms

    A synthetic-lethality RNAi screen reveals an ERK-mTOR co-targeting pro-apoptotic switch in PIK3CA+ oral cancers.

    Get PDF
    mTOR inhibition has emerged as a promising strategy for head and neck squamous cell carcinomas (HNSCC) treatment. However, most targeted therapies ultimately develop resistance due to the activation of adaptive survival signaling mechanisms limiting the activity of targeted agents. Thus, co-targeting key adaptive mechanisms may enable more effective cancer cell killing. Here, we performed a synthetic lethality screen using shRNA libraries to identify druggable candidates for combinatorial signal inhibition. We found that the ERK pathway was the most highly represented. Combination of rapamycin with trametinib, a MEK1/2 inhibitor, demonstrated strong synergism in HNSCC-derived cells in vitro and in vivo, including HNSCC cells expressing the HRAS and PIK3CA oncogenes. Interestingly, cleaved caspase-3 was potently induced by the combination therapy in PIK3CA+ cells in vitro and tumor xenografts. Moreover, ectopic expression of PIK3CA mutations into PIK3CA- HNSCC cells sensitized them to the pro-apoptotic activity of the combination therapy. These findings indicate that co-targeting the mTOR/ERK pathways may provide a suitable precision strategy for HNSCC treatment. Moreover, PIK3CA+ HNSCC are particularly prone to undergo apoptosis after mTOR and ERK inhibition, thereby providing a potential biomarker of predictive value for the selection of patients that may benefit from this combination therapy

    The MPA mouse breast cancer model: evidence for a role of progesterone receptors in breast cancer

    Get PDF
    More than 60% of all breast neoplasias are ductal carcinomas expressing estrogen (ER) and progesterone receptors (PR). In contrast, most of the spontaneous, chemically or MMTV induced tumors, as well as tumors arising in genetically modified mice do not express hormone receptors. We developed a model of breast cancer in which the administration of medroxyprogesterone acetate (MPA) to BALB/c female mice induces mammary ductal carcinomas with a mean latency of 52 weeks and an incidence of about 80%. These tumors are hormone-dependent, metastatic, express both ER and PR, and are maintained by syngeneic transplants. The model has been further refined to include mammary carcinomas that evolve through different stages of hormone dependency, as well as several hormone-responsive cell lines. In this review, we describe the main features of this tumor model, highlighting the role of PR as a trigger of key signaling pathways mediating tumor growth. In addition, we discussthe relevance of this model in comparison with other currently used breast cancer models pointing out its advantages and limitations and how, this model may be suitable to unravel key questions in breast cancer.Fil: Lanari, Claudia Lee Malvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Lamb, Caroline Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Fabris, Victoria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Helguero, Luisa A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Soldati, Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Bottino, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Giulianelli, Sebastian Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Cerliani, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Wargon, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Molinolo, Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Public Health Service. National Institute Of Health; Estados Unido

    Epidermal Loss of Gag Confers a Migratory and Differentiation Defect in Keratinocytes

    Get PDF
    G-protein coupled receptors (GPCRs), which activate heterotrimeric G proteins, are an essential class of transmembrane receptors that are responsible for a myriad of signaling events in normal and pathologic conditions. Two members of the G protein family, Gaq and Ga-11, activate one of the main GPCR pathways and function as oncogenes by integrating mitogen-stimulated signaling cascades that are active under malignant conditions. Recently, it has been shown that targeted deletion of Ga-11 and Gaq from endothelial cells impairs the Rho -mediated formation of focal adherens junctions, suggesting that Gai vg signaling may also play a significant role in cytoskeletal-mediated cellular responses in epithelial cells. Indeed, combined deletion of Ga-11 and Gaq confers a significant migratory defect in keratinocytes that delays cutaneous wound healing in an in vivo setting. This delay can be attributed to a defect during the reepithelialization phase due to significantly attenuated migratory capacity of Gaq-null keratinocytes under combined Ga-11 deficiency. In fact, cells lacking Gaivg demonstrate a severely reduced ability to respond to mitogenic and migratory signals in the microenvironment, leading to inappropriate and premature terminal differentiation. These results suggest that Gaivg signaling pathways may be critical for integrating mitogenic signals and cytoskeletal function to achieve normal physiological responses. Emergence of a malignant phenotype may therefore arise from both under- and overexpression of Gai vg signaling, implicating its upstream regulation as a potential therapeutic target in a host of pathologic conditions

    Positive Surgical Margins in the 10 Most Common Solid Cancers.

    Get PDF
    A positive surgical margin (PSM) following cancer resection oftentimes necessitates adjuvant treatments and carries significant financial and prognostic implications. We sought to compare PSM rates for the ten most common solid cancers in the United States, and to assess trends over time. Over 10 million patients were identified in the National Cancer Data Base from 1998-2012, and 6.5 million had surgical margin data. PSM rates were compared between two time periods, 1998-2002 and 2008-2012. PSM was positively correlated with tumor category and grade. Ovarian and prostate cancers had the highest PSM prevalence in women and men, respectively. The highest PSM rates for cancers affecting both genders were seen for oral cavity tumors. PSM rates for breast cancer and lung and bronchus cancer in both men and women declined over the study period. PSM increases were seen for bladder, colon and rectum, and kidney and renal pelvis cancers. This large-scale analysis appraises the magnitude of PSM in the United States in order to focus future efforts on improving oncologic surgical care with the goal of optimizing value and improving patient outcomes

    The head and neck cancer cell oncogenome: a platform for the development of precision molecular therapies

    Get PDF
    The recent elucidation of the genomic landscape of head and neck squamous cell carcinoma (HNSCC) has provided a unique opportunity to develop selective cancer treatment options. These efforts will require the establishment of relevant HNSCC models for preclinical testing. Here, we performed full exome and transcriptome sequencing of a large panel of HNSCC-derived cells from different anatomical locations and human papillomavirus (HPV) infection status. These cells exhibit typical mutations in TP53, FAT1, CDK2NA, CASP8, and NOTCH1, and copy number variations (CNVs) and mutations in PIK3CA, HRAS, and PTEN that reflect the widespread activation of the PI3K-mTOR pathway. SMAD4 alterations were observed that may explain the decreased tumor suppressive effect of TGF-β in HNSCC. Surprisingly, we identified HPV+ HNSCC cells harboring TP53 mutations, and documented aberrant TP53 expression in a subset of HPV+ HNSCC cases. This analysis also revealed that most HNSCC cells harbor multiple mutations and CNVs in epigenetic modifiers (e.g., EP300, CREBP, MLL1, MLL2, MLL3, KDM6A, and KDM6B) that may contribute to HNSCC initiation and progression. These genetically-defined experimental HNSCC cellular systems, together with the identification of novel actionable molecular targets, may now facilitate the pre-clinical evaluation of emerging therapeutic agents in tumors exhibiting each precise genomic alteration.Centro de Investigaciones Inmunológicas Básicas y Aplicada
    corecore